Table of contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>WHAT IS DRY ICE?</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>PELLET SIZE AND QUALITY</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>SAFETY</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>SAFETY DATA FOR CARBON DIOXIDE (CO₂)</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>SAFETY DATA FOR TRIBLAST T-2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>ASSEMBLY OF THE EQUIPMENT</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>DELIVERY</td>
<td>8</td>
</tr>
<tr>
<td>3.2</td>
<td>EQUIPMENT</td>
<td>8</td>
</tr>
<tr>
<td>3.3</td>
<td>CONNECTING THE EQUIPMENT</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>QUALITY</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>AIR QUALITY</td>
<td>10</td>
</tr>
<tr>
<td>4.2</td>
<td>PELLET QUALITY</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>OPERATING THE EQUIPMENT</td>
<td>11</td>
</tr>
<tr>
<td>5.1</td>
<td>BLASTER</td>
<td>11</td>
</tr>
<tr>
<td>5.1.1</td>
<td>TOP PANEL</td>
<td>11</td>
</tr>
<tr>
<td>5.2</td>
<td>PRESSURIZING</td>
<td>12</td>
</tr>
<tr>
<td>5.3</td>
<td>FEEDING DRY ICE</td>
<td>12</td>
</tr>
<tr>
<td>5.4</td>
<td>START/STOP</td>
<td>13</td>
</tr>
<tr>
<td>5.5</td>
<td>CLEANING OBJECTS</td>
<td>14</td>
</tr>
<tr>
<td>6.0</td>
<td>MAINTENANCE</td>
<td>14</td>
</tr>
<tr>
<td>6.1</td>
<td>MAINTENANCE INSPECTION INTERVAL</td>
<td>15</td>
</tr>
<tr>
<td>6.2</td>
<td>ADJUSTING THE SLOW-START AIR FLOW VALVE (ANTI-THRUST SETTING)</td>
<td>15</td>
</tr>
<tr>
<td>6.3</td>
<td>DISMANTLE THE AIR-LOCK</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>CLEANING THE EQUIPMENT</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>STORAGE</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>RECOMMENDED SPARE PARTS LIST</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>TROUBLESHOOTING</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>TECHNICAL DATA</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>EC DECLARATION OF CONFORMITY</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>GUARANTEE</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>DELIVERY REPORT</td>
<td>24</td>
</tr>
</tbody>
</table>
1 Introduction.

We are pleased that you have chosen the Triblast T-2 by Triventek for your company.

To obtain long and trouble-free operation of the equipment we recommend reading this manual carefully. All new operators of the equipment should also familiarize themselves with the content of this document.

1.1 What is Dry Ice?

Dry ice is frozen carbon dioxide (CO₂). The unique property of carbon dioxide is that at atmospheric pressure it changes state from solid to gas without going through a liquid phase. This process is called sublimation. This property is exploited for cleaning since the solid phase pellets can be used for blast cleaning and the blast media effectively ‘disappears’ as gas without any damaging or awkward liquid or solid residue. Rapid sublimation of the dry ice pellet as it contacts the object being cleaned causes a micro-explosion as the solid expands in volume 800 times, which is the prime means of causing contaminates to be removed from the substrate. Thermal effects, differential coefficients of freezing and embrittlement, also contribute to the cleaning effect.

A wide variety of substrates and contaminates can be cleaned successfully and advantageously using dry ice. It is recommended that any particular application be first tested to ensure the safety and effectiveness of the procedure.

1.2 Pellet size and quality

For most cleaning purposes standard 3 mm cleaning pellets can be used. Better results can be obtained in most situations using 2.2 mm pellets. These are not commonly available on the market, but can be freshly produced using Triventek dry ice making equipment. Micro-pellets down to 1.7 mm can be used for extremely delicate cleaning of e.g. fabrics and micro-electronics.

Cleaning quality, and the speed of cleaning, is always improved by using the freshest possible dry ice pellets of the highest quality (e.g. containing minimum water/moisture or particulates). Triventek offers a range of pelletizer and gas recovery equipment to assist in ensuring the supply of high quality dry ice.
2 Safety

2.1 Safety data for carbon dioxide (CO₂)

Hazards identification

Solid

The blaster equipment uses solid dry ice pellets (also known as: frozen carbon dioxide and ‘Dry-ice’)

Contact with product may cause cold burns or frostbite due to the low temperature at (minus) -79°C (-110°F)

Above -79°C (-110°F), solid dry ice sublimes into gas. This can cause pressure to build up in e.g. a container which is not suitably vented.

First aid measures

If contact with eyes: Immediately flush eyes thoroughly with water for at least 15 minutes. In case of frostbite, spray with tepid water for at least 15 minutes. Apply a sterile dressing. Obtain medical assistance.

Inhalation of sublimated CO₂ (gas)

CO₂ is heavier than air and may accumulate to hazardous levels in an unventilated enclosed area such as a tank, silo or pit. Always ensure adequate natural or mechanical ventilation. Use specific ventilation and/or breathing apparatus in any hazardous area such as a tank, silo or pit. CO₂ is odourless therefore it is recommended to use a CO₂ detector in working areas.

Low concentrations of CO₂ cause increased respiration and headache. In high concentrations carbon dioxide gas can cause asphyxiation by displacing the oxygen required for breathing. Symptoms may include loss of mobility or consciousness. Victim may not be aware of asphyxiation.

First aid measures

Remove victim to uncontaminated area, the rescuer should wear breathing apparatus e.g. an emergency breathing air bottle and mask to ensure that he/she does not also fall victim to asphyxiation. Keep victim warm and rested. Call a doctor. Apply artificial respiration if breathing has stopped.
Exposure controls / personal protection

Exposure limit: 5000 ppm
Personal protection: Protect eyes, face and skin from contact with solid product. Protect skin, especially hands, from cold by wearing insulated gloves.

Transport information

Avoid transport of carbon dioxide in solid, liquid or gas phase on vehicles where the load space is not separated from the driver's compartment. Ensure vehicle driver is aware of the potential hazards of the load and knows what to do in the event of an accident or an emergency. Before transporting product containers, ensure that they are firmly secured and that adequate ventilation is provided.

Note that after blast cleaning work, unused dry ice may remain in the blaster, or in temporary storage boxes. This should be carefully allowed to sublimate before transportation in a compartment shared with the driver.

Handling and storage of dry-ice

Use only properly specified equipment that is suitable for this product. Contact your supplier if in doubt. Refer to supplier's container handling instructions. Keep container in a well-ventilated place.

Training

The hazard of asphyxiation is often overlooked and must be stressed during operator training. Before using this product in any new process or experiment, a thorough material compatibility and safety study should be carried out.

Ensure all national / local regulations are observed. The European Industrial Gas Association (EIGA), see www.eiga.org/, provides useful background material and guides to good practice.
2.2 Safety data for Triblast T-2

Before blasting, be sure to have the right safety precautions arranged i.e. carry out a risk assessment.
Be sure that only people who are properly trained in handling the blaster, and know the risks associated with dry ice, are using the equipment.
Secure the area; be sure no unauthorized people will enter the working area.

Please confirm before blasting the nature of the coating or substance which is to be cleaned. In the case of hazardous materials, appropriate safety precautions must be taken, such as Local Exhaust Ventilation or Personal Protective Equipment.

Always use the following safety precautions:

Face protection or goggles
Wear protective goggles or face protection when operating the equipment, in particular to guard against ‘blowback’ of the contaminant being removed.

Ear protection
Always wear adequate hearing protection
Noise levels of 120dB(A) can be experienced, depending on the pressure, dry ice flow and shape of the object being cleaned. Ensure that nearby workers are not exposed to excessive noise.

Protective gloves
Always use suitably insulated protective gloves when handling dry ice, or cold parts of the machinery. Contact with product may cause cold burns or frostbite.

Breathing apparatus
Where sufficient ventilation, either naturally or by mechanical means, cannot be provided then a suitable supply of breathing air should be arranged. In such circumstances, it is also recommended that an emergency breathing air bottle and mask be provided in the vicinity of any carbon dioxide operations. The emergency apparatus is for use by the rescuer in case of any incapacitation of a person in an area where carbon dioxide has accumulated and could cause asphyxiation to the rescuer.
Inhalation of vaporized CO₂

In insufficiently ventilated spaces such as a vessel, tank or small room an increased concentration of CO₂ might lead to breathing difficulties and ultimately to suffocation. Always ensure a supply of fresh air in enclosed rooms. A CO₂ detector should be used to confirm safe conditions. Where necessary, use a breathing mask with suitable fresh air supply.

Caution

Never blast on people or other living creatures. Compressed air stream with pellets may cause severe injuries.

Never touch the pellet stream or the (cold) nozzle during operation!

Do not permit horseplay with dry ice. In particular, ensure that dry ice pellets are not ingested, e.g. by being placed in drinks.

Low temperature

The dry ice pellets’ temperature is -79°C (-110°F) and therefore can cause severe freeze burns.

Do not touch or permit direct contact with dry ice for any extended period. Use protective clothing and gloves. Ensure that pellets do not become lodged underneath clothing or other protective equipment.

Note: parts of the Blaster may become extremely cold due to contact with the dry ice (e.g. the hopper, nozzle, air lock).

Earthing

Ensure that the objects to be cleaned are connected to a proper earth in order to avoid a static electrical discharge caused by the high velocity of the pellets / air stream.
3 Assembly of the equipment

3.1 Delivery

Transport

After the dry ice blasting unit has been delivered, it must be checked for damage which may have occurred during transport. If necessary, the transport company must be informed to register the damage within 24 hours. Check that all parts described on the delivery note have been delivered.

3.2 Equipment

The Triblast T-2 by Triventek consists of the following items:

◊ Dry ice blaster unit.
◊ 7 meter blasting hose with built-in earthing cable.
◊ Gun + 1 round nozzle 80/11 mm
◊ Control cable connecting gun to blaster (running inside the hose cover).
◊ **Option:**
◊ Nozzle box with 4 nozzles, 2 straight extender pipes, 1 curved pipe and 3 connection pieces.

3.3 Connecting the equipment.

3.3.1 Ice blasting unit

Power:
Connect the power supply cable to an appropriate power supply.
(See reference to check power requirement on CE-sign on machine).

Cable and hose:
Connect the male socket of the control cable to the socket at the front of the blaster. Once the plug is lined up, twist to secure.

Connect the blasting hose to the hose connection at the lower front of the blaster. This is easily done with the snap-fit safety connection by pulling back the collar as the hose is slid onto the machine.
3.3.2 Gun and Nozzles

Connect the gun to the control cable and the hose. If needed, connect the extension pipe(s) to the gun by screwing the pieces together (hand-tight only) using the connection piece(s).

Use a connection piece to connect the nozzle to the gun or extension pipe (if fitted).

Use the twist-grip handle to ensure steady handling.

A variety of nozzles are provided for different cleaning applications. It is recommended that a test area/object be selected to establish which the appropriate nozzle for any particular cleaning job is.
3.3.3 Connecting to compressor

Connect the compressed air hose from the air source (e.g. mobile compressor or fixed compressed air system) to the compressed air inlet on the back of the blaster. Ensure that all hoses are correctly connected and check the hoses for visible damage. Replace if damaged.

Never disconnect hoses when the system is running and pressurized. At the end of a blasting session, first shut down the compressed air source and then open the blasting gun trigger to depressurise the system.

4 Quality

4.1 Air quality
Always use clean and dry air. The air from the compressor should be delivered free from oil, particulate or humidity. It is recommended to use an after-cooler, water separator, fine oil and particulate filter and in some cases a refrigerant dryer. If using factory air, from a fixed installation, ensure that consideration has been given to the heavy demand in terms of volume that the blaster will make.

4.2 Pellet quality
Always use “fresh” dry ice pellets with a maximum diameter of 4mm. Using pellets contaminated with moisture can result in freezing of the airlock rotor plate and hose by wet ice and / or by clogging.

Make sure that only CO₂ pellets are introduced into the hopper. Any foreign material in the hopper will lead to serious damage to the airlock.

Keep the hopper lid closed as much as possible to avoid dirt falling into the hopper and to minimise moisture ingress.
Operating the equipment.

5.1 Blaster

5.1.1 Top panel

On/Off button (1)
To activate the Blaster, turn the On/Off button to On. The button will light green and the blaster is ready for operation.

Pellets (2)
To adjust the consumption of pellets at the Blaster the speed of the rotor plate or ‘airlock’, which transports the ice pellets to the blast air port, can be adjusted by turning the knob (2) at the front panel. For higher pellet consumption turn clockwise, counter clockwise for less.

Note that this control provides approximate proportional control of the pellet quantity. Different rotor plates are available which provide differing ranges of dry ice pellet consumption. The regulation of pellet consumption will not interfere with the air pressure or air stream.
Pressure (3)
The working pressure can be adjusted and read at the top front panel. To adjust the pressure, unlock the pressure adjustment control (3) by lifting it and turning the button until the required pressure is shown at the manometer (can be done before and during work).

Reset button (4)
The Error button will indicate an overload at the motor or a problem with the power supply to the inverter, by illuminating. Reset by pressing the button.

Emergency Stop (5)
Push down for Emergency Stop of the blaster. When activated everything at the Blaster is stopped. Be sure also that the operator knows how to isolate and shut down the compressed air source in an emergency. By turning clockwise the stop button is deactivated and normal operation will resume.

5.2 Pressurizing
Open the valve slowly at the air supply (e.g. compressor) to the Blaster to avoid heavy pressure shock to the hose and Blaster. Such shock can damage the pneumatic components. Adjust the working pressure, using knob 1 to that required. It is recommended that you should always start a test clean with low pressure and then work up the pressure to the point, if any, where damage to the substrate, or removal of a coating layer which you want to keep, is reached.

5.3 Feeding Dry Ice

NB: Before filling dry ice into the hopper ALWAYS activate the blast function for about 30 sec. by pressing both buttons on the gun to empty the hose and machine of humidity or moisture.

Pour dry ice into the hopper. Use fresh dry ice for best results and to avoid clogging. Close the lid to minimize evaporation of dry ice and the ingress of humidity and dirt. Use only dry ice. Other material will damage the equipment (and invalidate the guarantee) Do not overfill the hopper. If the lid cannot be closed then the hopper is overfilled.

Do not blast for any length of time (after initial system purging) without dry ice, since the rotor will run extremely hot and may be damaged.
5.4 Start/stop

Start of dry ice blasting
When the Blaster is connected properly, correct air pressure is adjusted and dry ice is in the hopper, you are ready for dry ice blasting.
Before starting blasting, have a firm grip of the gun and keep it away from other people. Stand in a safe working position.
To start ice blasting push the two buttons at the gun pistol grip (once started it is only necessary to keep the top button pressed). Hold both buttons for 3-5 seconds. Air pressure will slowly build up (the speed with which the air pressure comes on is adjustable – see below) due to the soft-start mechanism.
When starting, keep the gun some distance from object to be cleaned until you are able to confirm the back-pressure of the gun.
Note: The blasting pressure and the amount of dry ice can be changed during operation of the machine.

Stop dry ice blasting.
To stop, release the buttons at the gun.

If stopping for more than approximately 30 minutes (depending on room humidity), make sure that the hopper is empty and blast air through the system for a short period to ensure no dry ice is left in the system. This avoids dry ice clumping in the hopper and airlock chute

When the system is empty, stop blasting to avoid unnecessary wear of the rotating disc.

If dry ice pellets are not returned to storage, care should be taken to ensure their safe disposal. Avoid leaving pellets exposed where untrained persons may be able to touch them, or where sublimation could cause a hazardous atmosphere.
5.5 Cleaning Objects

Attention!

- Small objects should be **fixed** or mounted properly before blasting.
- Do not leave loose parts in the blasting area.
- Most contaminants tend to pulverise while cleaning. If the maximum total dust concentration of 6 mg/m³ (fine dust) (or other local/national control values) is exceeded, a **mask** must be worn. Protective measures should be taken such as Local Exhaust Ventilation and/or other Personal Protective Equipment. A suitable mask or other control measures may be needed to protect against specific hazardous contaminants. In poorly ventilated enclosed spaces, forced ventilation or breathing apparatus may be needed to avoid asphyxiation by sublimated carbon dioxide.
- The nozzle of the gun discharges gases and CO₂ pellets at very high velocities (up to 300 m/sec or 1000 ft/sec). **Never** aim the gun at human beings or animals or in the direction of other workers as serious/fatal injuries may be caused.
- When activating blasting, back-thrust, in the opposite direction of the airflow, will occur. In order to anticipate the reactive thrust, **always** take a wide stance (feet approx. 60 cm (2ft.) apart and your upper body leaning into the direction where the nozzle points). A slow-start air volume valve is installed to automatically slowly open the airflow to minimize any back-thrust shock. The speed of opening up the airflow can be adjusted to operator preference (see section 6.2).

6.0 Maintenance

Active maintenance is necessary only if the performance of the dry ice blasting machine is no longer satisfactory. However, we advise you to check the unit, at regular intervals, as described hereunder.

Casing

To access the airlock for maintenance take off the top cover and place it across the top of the ice hopper. Loosen the side retaining screws and withdraw the casing. Replace the top cover and the blaster can be operated with full access to internal mechanics.
6.1 Maintenance Inspection interval

Check the airlock (pellet distributor system) for excessive air leakage every 100 operating hours or every 3 months, whichever comes first.

Note: there will always be small amounts of air, and very occasional pellet/fragments/vapour, being ejected out of a slot at the side of the airlock. This is done to relieve any excess pressure within the airlock dry ice pockets.

If, during blasting, excessive air and dry ice comes out between the upper and lower aluminium parts and the rotating disc, this is an indication that the rotating disc has worn down or the rotor is damaged. In this event, either the rotating disc should be replaced or the 4 spacers (which set the distance between the upper and lower aluminium plates) should be replaced with 4 smaller ones to ensure an adequate seal. Spare sets of spacers are provided so that this operation can be carried out conveniently and cheaply. The spacers are basically 10.\(n\) mm in length. They are marked with a number of rings to indicate their length in terms of the ‘\(n\)’ number after the decimal place. Thus a spacer with 9 rings is 10.9mm long; a spacer with 8 rings is 10.8mm long.

Check the pneumatic system for air leakage by listening. If there is any sound of unusual airflow, check the air hoses visually for leakage.

6.2 Adjusting the slow-start air flow valve (anti-thrust setting)

The function of the slow-start air flow valve is to avoid a strong back-thrust upon activation of the blaster. When pressing the buttons on the gun the valve will ensure that the air pressure builds up slowly.

If the air-valve does not open properly, turn the control pin: clockwise (left) for slower pressure build-up; anti-clockwise (right) for faster pressure build-up. Fix the chosen setting by tightening the check-ring at the base of the control pin. Sometimes the air valve will not open on starting blasting because of dirt, moisture or excessive main air pressure, making it difficult to open the valve. In this event, turn the control pin anti-clockwise (right) to increase the opening pressure from the pneumatic control system.
6.3 Dismantle the air-lock

<table>
<thead>
<tr>
<th>Step</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undo the 2 bolts holding the outlet tube using an allen (hexagon) key.</td>
<td></td>
</tr>
<tr>
<td>Undo the 4 bolts at the upper plate, using an Allen key.</td>
<td></td>
</tr>
<tr>
<td>On turning over the upper plate, remove the feeding slot piece, which is loose.</td>
<td></td>
</tr>
<tr>
<td>Lift up the plastic rotor disc</td>
<td></td>
</tr>
<tr>
<td>Remove the spacers.</td>
<td></td>
</tr>
<tr>
<td>On reassembly of the air lock, take care to ensure that the feeding slot piece is held in position and that the O-ring is not damaged or displaced.</td>
<td></td>
</tr>
</tbody>
</table>
7 Cleaning the equipment
Clean with low-pressure compressed air. If the equipment has become dirty, it should be cleaned by means of a wiper moistened with a cleaning material (degreaser). Do not pressure wash.

8 Storage
The equipment can be stored in temperatures of -5°C to +40°C (23°F to 104°F). Please note, that temperature changes overnight of 20°C (68°F) might cause condensation (dew) inside the electronics, which can cause damage to the equipment. If condensation is suspected then place the equipment in a warm room (15°C to 22°C) (59°F to 72°F) for 1 hour before use.
Recommended spare parts list

<table>
<thead>
<tr>
<th>Spare part no.</th>
<th>Description</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>04102600</td>
<td>Rotor</td>
<td></td>
</tr>
<tr>
<td>04105201</td>
<td>Airplate</td>
<td></td>
</tr>
<tr>
<td>33275200</td>
<td>O-ring</td>
<td></td>
</tr>
<tr>
<td>BL451022</td>
<td>Spacer 10,9 mm</td>
<td></td>
</tr>
<tr>
<td>35149201</td>
<td>Filter element ¼”</td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting

It is very important that the equipment should be maintained and operated as stipulated in this manual.

However, if a breakdown should occur, the following scheme can be used for troubleshooting.

Always ensure that the system has been appropriately shut down, de-energised and de-pressurised before attempting troubleshooting.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blaster does not start.</td>
<td>No power</td>
<td>Check if machine is in “on” position and button is lighting up green.</td>
</tr>
<tr>
<td>Blaster stops (Motor not running)</td>
<td>Emergency button is pressed</td>
<td>Turn emergency button (1/4) clockwise.</td>
</tr>
<tr>
<td></td>
<td>Both control buttons on gun must be pressed for start-up</td>
<td>Press both control buttons at gun.</td>
</tr>
<tr>
<td></td>
<td>Unwanted particles or parts in airlock.</td>
<td>Dismantle airlock. Clean and check for damage</td>
</tr>
<tr>
<td></td>
<td>Overload of the electric motor. Red light illuminated in the reset button on top panel.</td>
<td>Press the red reset button and the inverter/motor is reset automatically. Check inverter control for any error message. A manual explaining the inverter operation and error messages is located in the electrical control panel. Note that excessive voltage drops (caused e.g. by other large equipment starting up which draws power from the same electrical supply) can cause the inverter to stop. If so, find another power source. Check the airlock.</td>
</tr>
<tr>
<td></td>
<td>Damage to control cable</td>
<td>Check for proper connection and damage; possibly replace damaged parts</td>
</tr>
<tr>
<td></td>
<td>Motor deactivated due to overload. Distance too narrow between top and bottom plates in airlock, causing the rotor plate to jam.</td>
<td>Loosen 4 bolts in top plate by turning bolts (1/4 turn at a time) and try restarting. If problem continues then replace spacers with larger spacers.</td>
</tr>
<tr>
<td>No or little dry ice delivery</td>
<td>No pellets in the hopper</td>
<td>Clogging of dry-ice. Too much moisture in air supply</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Fill the hopper with pellets</td>
<td>Check the blaster hose and uncoil if necessary.</td>
<td>Check that the compressor has a water separator and after cooler. Check whether old, soft or ‘wet’ dry ice has ‘bridged’ above the feed shute at the bottom of the hopper</td>
</tr>
<tr>
<td>The blaster hose is twisted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The hose, gun, pipe (or ice crusher, if used) and/or nozzle is blocked by an ice plug</td>
<td>Check for pellet blockage inside the blaster hose If so, disconnect the blaster hose and gun and let the dry ice sublime. Sublimation can be made faster by applying heat (taking care to avoid damage to e.g. the silicon hose) If ice crusher blocks, ensure that a large aperture nozzle (e.g. 100/15) is being used; try higher pressure, or older, softer dry ice, or larger size grating</td>
<td></td>
</tr>
<tr>
<td>Problem with air supply and/or compressor</td>
<td>Check air pressure at the manometer on the compressor/ air supply. Check air supply hoses.</td>
<td></td>
</tr>
<tr>
<td>Slow start of blasting</td>
<td>Air valve needs adjustment</td>
<td>See 6.2</td>
</tr>
<tr>
<td>Low air pressure at nozzle when blasting</td>
<td>Damaged rotor</td>
<td>Check the airlock</td>
</tr>
<tr>
<td></td>
<td>Blaster nozzle too big</td>
<td>Change to a smaller nozzle</td>
</tr>
<tr>
<td></td>
<td>If used, ice crusher is blocked</td>
<td>See above re ice crusher</td>
</tr>
</tbody>
</table>

In all other situations we kindly ask you to contact the appointed distributor or Triventek A/S for further instructions.

Under no circumstances should an object (such as a ‘poking’ stick) be put into the rotor plate inlet below the feed shute. Otherwise you could damage the rotating disc. Such damage is not covered by the manufacturer’s guarantee.
Technical data

<table>
<thead>
<tr>
<th></th>
<th>240 V AC</th>
<th>110 V AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>50/60 Hz</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Power</td>
<td>0,75 kW</td>
<td>0,75 kW</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Length</td>
<td>Width</td>
</tr>
<tr>
<td></td>
<td>580 mm</td>
<td>520 mm</td>
</tr>
<tr>
<td></td>
<td>(22,8 in)</td>
<td>(20,5 in)</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td>80 kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(176 lb)</td>
</tr>
<tr>
<td>Hopper</td>
<td></td>
<td>23L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6 us gal)</td>
</tr>
<tr>
<td>Required Air Supply</td>
<td>4,5 - 12 m³/min</td>
<td>2-14 bar</td>
</tr>
<tr>
<td></td>
<td>(160-424 cfm)</td>
<td>(30-200 psi)</td>
</tr>
</tbody>
</table>
EC Declaration of Conformity

Manufacturer: Company Name: Triventek A/S
Address: Fabriksvej 1
 5466 Asperup
 Denmark
Tel.: +45 70 22 12 92

Hereby declare that
Machine:
No.: 06-566
Name: Triblast T-2
Type: Blaster
Year: 2006

Is in conformity with:

- COUNCIL DIRECTIVE of 19 February 1973 on the harmonization of the laws of Member States relating to electrical low voltage equipment designed for use within certain voltage limits.

The machinery was manufactured in conformity with the following national standards that implements a harmonised standard:

EN 292-1 Basic terminology, methodology
EN 292-2 Technical principles and specification
EN 60204-1 Safety of Machinery. Electrical requirements of machines

Position: Sales Director
Name: Ken Ege Jensen
Company: Triventek A/S

Date: 23.10.2006. Signature:
13 Guarantee

The equipment is covered by a 12 months guarantee from the date of delivery to the customer. The guarantee period comes into force upon delivery to the customer and must be confirmed by Triventek A/S (via an appointed distributor or directly) receiving the signed delivery report within 20 days of delivery.

The guarantee covers parts and replacement in our factory, or by our distributor. It is however a condition of the guarantee, that the instructions in this Owners Manual have been followed, and that the equipment has been properly maintained.

Equipment, which has been repaired by unauthorised persons without our written consent, is not covered by this guarantee.

Warranty claims from third parties are not covered by this guarantee.
14 Delivery report.

Distributor name:

Owner’s name:

Owner’s address:

Equipment number

Extent of delivery:
- ☐ Triblast T-2
- ☐ Hose
- ☐ Gun with nozzle

Signed: _______________ Date: _______________
Dealer

Delivery report - to be completed by the owner.

I have received:
- ☐ Owners manual for Triblast T-2 by Triventek

The equipment has been delivered to me in a satisfactory condition, and I fully understand that the warranty is for a period of 12 months after the date of delivery. I accept that neglect or misapplication of the equipment, as well as unauthorized modifications or repair shall cause this warranty to be void.

End-user’s signature: __

Title: _______________ Date: _______________

Warranty of the above equipment will not be effective before this form has been completed, properly signed and this original returned within 20 days of delivery to

Triventek A/S
Fabriksvej 1
DK-5466 Asperup
Denmark

Comments: ___
